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Abstract
Exponentials of squared returns in Gaussian densities, with their conse-

quently thin tails, are replaced by the absolute return to form Laplacian and
exponentially tilted Laplacian densities at unit time. Scaling provides densities
at other maturities. Stochastic processes with these marginals are identified. In
addition to a specific local volatility model the densities are consistent with the
difference of compound exponential processes taken at log time and scaled by the
square root of time. The underlying process has a single parameter, the constant
variance rate of the process. Delta hedging using Laplacian and Asymmetric
Laplacian implied volatilities are developed and compared with Black Merton
Scholes implied volatility hedging.The hedging strategies are implemented for
stylized businesses represented by dynamic volatility indexes. The Laplacian
hedge is seen to be smoother for the skew trade. It also performs better through
the financial crisis for the sale of strangles. The Laplacian and Gaussian mod-
els are then synthesized as special cases of a model allowing for other powers
between unity and the square. Numerous hedging strategies may be run using
different powers and biases in the probability of an up move. Adapted strate-
gies that select the best performer on past quarterly data can dominate fixed
strategies. Adapted hedging strategies can effectively reduce drawdowns in the
marked to market value of businesses trading options.

1 Introduction

The Black-Scholes (1973) and Merton (1973) model for pricing options is widely
employed in quoting option prices indirectly through the use of the Black-
Merton-Scholes implied volatility. These implied volatilities are then employed

∗Much of the work on the theoretical structure of the model in this paper was done in col-
laboration with Marc Yor in the summer of 2001. We are greatly indebted to his contributions.
Marc Yor passed away January 9, 2014
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to infer the option delta or derivative of option price with respect to a move-
ment in the spot price. Aggregating across all deltas for open option positions
an aggregate delta is determined and a position opposite to the delta is taken
in the spot asset as a hedge. This practice is called delta hedging at the Black-
Merton-Scholes implied volatility.
The risk neutral density of the Black-Merton-Scholes model for the logarithm

of the stock is a Gaussian density that is symmetric and very thin tailed with
probabilities falling exponentially in the square of return. Actual risk neutral
densities in markets reflect significant levels of skewness and much fatter tails
reflected in the implied volatility smile. It is therefore a reasonable conjecture
that hedging performance may possibly be improved by employing a skewed
and heavier tailed distribution while keeping the structure of a one parameter
model permitting fast access to such an implied parameter. With a view towards
organizing finite moments of all orders we investigate here, first the use of a
Laplacian distribution that falls linearly with the exponential of the absolute
return as opposed to its square. As a second step we allow for asymmetry by
differentiating the rate of probability decay in the tails for positive and negative
returns. Later we synthesize both the Laplacian and Gaussian models as special
limiting cases allowing for other powers between unity and the square. This
latter model is referred to here as the Laplace Gauss (LG) model.
For the Laplacian model the result is an option pricing model with expo-

nential tail probabilities that are even simpler than the cumnorm function em-
bedded in the Black-Merton-Scholes model. The LG model requires numerical
approximation methods. The single implied parameter in all cases is again the
volatility of the distribution with fast access to both the implied volatility and
the associated delta. An adapted hedging strategy can be built where one em-
ploys the best hedge based on a performance evaluation of a variety of hedges on
the immediate past data. For an effective comparison of hedging performance
we implement delta hedging for businesses that take various positions in options
daily, that then daily delta hedge all open positions and daily mark all open
positions to market. We thereby construct an index representing the value of
the business accumulating all related cash flows along with marking all open
positions to market. The indexes are constructed for real market data from
May 1997 to April of 2015 in some cases and from March 15 2006 to March 16
2016 in other cases. The daily change in the post hedge index value represents
the random shocks to net worth for the business attained with different hedge
designs.
A conservative valuation of the business that aggregates risk and reward is

then determined as the bid price for the associated business risk by evaluating
an expectation with respect to a non-additive probability exaggerating the prob-
ability of losses while simultaneously depressing the probability of gains. Such
valuations are characteristic of valuations in two price economies (Madan (2012),
(2015a)) defining acceptable risks as a convex cone of random variables con-
taining the nonnegative random variables (Artzner, Delbaen, Eber and Heath
(1999)). Hedges delivering higher bid prices are examples of superior hedging
mechanisms. The bid prices may also be seen as reward less risk with reward
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being the usual additive expectation and risk being the ask price for negative of
the centered random variable. This is because once one has centered the random
variable it is pure risk that requires the purchase of its negative to exit the risk.
The cost of such a purchase is the ask price for the negated and centered random
variable. Such a formulation for the bid price is developed in Madan (2015b).
One may rank hedging strategies based on the bid price for daily changes in
recent net worth and then implement the hedge for the next day that has the
highest bid price. We refer to such a hedge as an adapted hedging strategy.
We observe that for businesses trading and holding short maturity deep out

of the money options the different hedging strategies are comparable. However
when near money options are involved then the Laplacian hedge may provide a
superior hedge. We perform conservative valuations of businesses by evaluating
the expectation with respect to a nonadditive probability of cash flows and or
changes in net worth generated by the business over the next year. We observe
that hedging assists value when open positions are marked to market and hence
one may argue that the primary motivation for hedging may be the culture of
marking open positions to market. Hedging may reduce the value of cash flows
in the absence of marking open positions to market. Laplacian or LG hedging is
also observed to deliver better hedges in times of financial crisis or when markets
are more volatile. Adapted hedging can provide substantial improvements over
any fixed or predetermined hedging strategy.
For the Laplacian model, the stochastic process being employed for the log-

arithm of the stock price is shown to be consistent with a stochastic differential
equation that incorporates a local volatility model in which volatilities rise as
the spot deviates from its expected value in either direction at a uniform and
constant response rate. There is also a one dimensional Markovian martingale
with independent and inhomogeneous increments that has the adopted Lapla-
cian densities at each maturity. In fact the discontinuous process consistent
with these marginals is the homogeneous difference of compound exponential
Poisson processes evaluated at ln(t) and scaled by

√
t.

After a presentation of the details on the Laplacian model, the two models
Laplacian and Gaussian, are then made special cases of a more general model
allowing for arbitrary powers other than unity and the square to lead to the
Laplace Gauss, LG model. For both the Laplacian and LG models we entertain
asymmetric versions of the model permitting some skew adjustments in the delta
hedge design.
Section 2 presents the densities, the formulas for European call and put

option prices along with the deltas needed for delta hedging for the Lapla-
cian model. The underlying stochastic processes consistent with the Laplacian
model are presented in section 3. Section 4 takes up the case of an Asymmetric
Laplacian model. Section 5 presents a sample of implied volatility curves for
the three models. Section 6 presents a comparison for hedging businesses using
delta hedging at Black-Merton-Scholes implied volatilities with those obtained
from the Laplacian and Asymmetric Laplacian models. Section 7 presents com-
parisons for various option selling businesses and their conservative valuation
time paths. In Section 8 we synthesize the Laplacian and Black Merton Scholes
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Gaussian models to formulate the LG model. Experiments with LG implied
volatilities and deltas are reported on in Section 9. Section 10 develops and
implements Adapted Hedging. Section 11 concludes.

2 The Return Densities

The Gaussian return density is symmetric about zero with tails that decline with
the exponential of the square of the return. Pricing densities are known to have
fatter tails, or tails that decline at rates below that of the Gaussian. We consider
instead densities with tails that decline with the exponential of the absolute
value of the return, as opposed to its square. This structure is comparable to the
form of the variance gamma Lévy densities, where we also have predominantly
exponential decay rates. Consider therefore the one parameter family

g(x, t) =
1

σ
√

2t
exp

(
−
√

2 |x|
σ
√
t

)
, −∞ < x <∞ (1)

This density, like the Gaussian, is symmetric with zero odd moments and
one may easily compute its variance to be σ2t. We also verify by the change of
variable y = x/

√
t that

h(y) =
1

σ
√

2
exp

(
−
√

2 |y|
σ

)
= g(y, 1)

and hence the proposed densities satisfy the same scaling condition as the orig-
inal Black-Merton-Scholes model.
The model for the stock price under Black-Merton-Scholes for a constant

continuously compounded interest rate of r and a dividend yield of q, is given
by

S(t) = S(0) exp

(
(r − q)t+ Z(t)− σ2t

2

)
where Z(t) has the Gaussian density of zero mean and variance σ2t.
We replace the variable Z(t) by X(t) that has the density of equation (1) and
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accordingly alter the exponential compensation on evaluating the expectation

E [exp (Xt)] =

∫ ∞
−∞

ex
1

σ
√

2t
exp

(
−
√

2 |x|
σ
√
t

)
dx

=

∫ ∞
0

1

σ
√

2t
exp

(
−
( √

2

σ
√
t

+ 1

)
x

)
dx+

∫ ∞
0

1

σ
√

2t
exp

(
−
( √

2

σ
√
t
− 1

)
x

)

=
1

σ
√

2t

 1
√

2
σ
√
t

+ 1
+

1
√

2
σ
√
t
− 1


=

1

σ
√

2t

 2
√

2
σ
√
t

2
σ2t − 1


=

1(
1− σ2t

2

) = exp

(
− log

(
1− σ2t

2

))
Hence we write the stock price at time t as

S(t) = S(0) exp

(
(r − q)t+X(t) + log

(
1− σ2t

2

))
. (2)

2.1 European Call and Put Option Pricing

The prices of European Call and Put options consistent with the specification
(2) are easily computed to be

C(K) = S(0) exp(−qt)
exp(−

(√
2− σ

√
t
)
|d|)

2

(
1 + σ

√
t/2
)
−K exp (−rt)

exp
(
−
√

2 |d|
)

2
, d > 0

P (K) = K exp (−rt)
exp

(
−
√

2 |d|
)

2
− S(0) exp(−qt)

exp(−
((√

2 + σ
√
t
)
|d|
)

2

(
1− σ

√
t/2
)
, d < 0

C(K) = P (K) + S(0) exp(−qt)−K exp(−rt), d < 0

P (K) = C(K) +K exp(−rt)− S(0) exp(−qt), d > 0.

d =
log(K/S(0))

σ
√
t

−
(
r − q
σ

)√
t−

log(1− σ2t
2 )

σ
√
t

.

These price relations may be inverted to derive the appropriate implied
volatilities.

2.2 Construction of Deltas

The call and put deltas may be computed as follows:
For d > 0 the call price is

1

2
Se−qte−(

√
2−σ
√
t)d(1 + σ

√
t/2)− 1

2
Ke−rte−

√
2d
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It follows that

∂C

∂S
=

1

2
e−qte−(

√
2−σ
√
t)d(1 + σ

√
t/2)

+
1

2
Se−qte−(

√
2−σ
√
t)d(1 + σ

√
t/2)(σ

√
t−
√

2)
∂d

∂S

+
1

2
Ke−rte−

√
2d
√

2
∂d

∂S

We now substitute from the definition of d that

Ke−rt = Se−qteσ
√
td(1− σ2t

2
)

We then obtain that the sum of the last two terms is

1

2
Se−qte−(

√
2−σ
√
t)d

[
(
σ2t

2
− 1)
√

2 +
√

2(1− σ2t

2
)

]
∂d

∂S
= 0

It follows that
∂C

∂S
=

1

2
e−qte−(

√
2−σ
√
t)d(1 + σ

√
t/2) (3)

Similarly for d < 0 we have that the put price is given by

1

2
Ke−rte

√
2d − Se−qte(

√
2+σ
√
t)d
(

1− σ
√
t/2
)

It follows that

∂P

∂S
= −1

2
e−qte

√
2(
√

2+σ
√
t)d
(

1− σ
√
t/2
)

+
1

2
Ke−rte

√
2d
√

2
∂d

∂S

− 1√
2
Se(
√

2+σ
√
t)d
(

1− σ
√
t/2
)

(
√

2 + σ
√
t)
∂d

∂S

Once again substituting for Ke−rt we obtain that the sum of the last two terms
is

1

2
Se−qte

√
2(1+σ

√
t)d

[√
2(1− σ2t

2
)−
√

2(1− σ2t

2
)

]
∂d

∂S
= 0

Hence we have that

∂P

∂S
= −1

2
e−qte(

√
2+σ
√
t)d
(

1− σ
√
t/2
)

(4)

for d < 0.
From put call parity we know that

∂C

∂S
− ∂P

∂S
= e−qt
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so for d < 0 we have that

∂C

∂S
= e−qt +

∂P

∂S
(5)

while for d > 0
∂P

∂S
=
∂C

∂S
− e−qt (6)

Equations (3, 5, 4, 6) complete the delta calculations for the Laplacian pric-
ing model.

3 Underlying Stochastic Processes for Laplacian
densities

We develop two representations for the continuous time stochastic process con-
sistent with the marginal densities associated with the stock price model (2).
The first is a continuous process for the logarithm of the stock price. The sec-
ond is a representation as a purely discontinuous martingale for the stock price
itself.

3.1 A Continuous Representation

We note that the logarithm of the stock price is given by

log(S(t)) = log(S(0)) + (r − q)t+ log
(
1− σ2t

)
+X(t) (7)

= log(S(0)) +

∫ t

0

(r − q)− σ2

1− σ2s
ds+X(t)

The process X(t) has the marginal densities given by equation (1) . These
are zero mean densities and we seek to write X(t) as a continuous martingale.
For this purpose consider the representation

X(t) =

∫ t

0

σ(s,Xs)dW (s) (8)

We know by construction that the laws of X(t) satisfy the scaling property
in that for any fixed c > 0

(Xct, t ≥ 0)
law
=
(√
cXt, t ≥ 0

)
(9)

and furthermore we know that

g(x, t) =
1√
t
h

(
x√
t

)
.
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It is shown in Madan and Yor (2002) that the continuous martingale repre-
sentation (8) for such marginals is obtained on defining

σ2(s, x) = a

(
x√
s

)
a(y) =

1

h(y)

∫ ∞
y

zh(z)dz

In our particular case we may determine the function a(y) on performing
the integration with respect to the function h. The result is given by

a(y) = σ2 + σ |y| .

It follows that we have the continuous representation

X(t) =

∫ t

0

√
σ2 + σ

∣∣∣∣Xs√
s

∣∣∣∣dW (s)

Substituting for X(t) in terms of S(t) from equation (7) we may write the
stochastic differential equation for the log of the stock price directly as

log(S(t) = log(S(0)) +

∫ t

0

[
(r − q)− σ2

1− σ2u

]
du+∫ t

0

σ

√
1 +

1

σ
√
u
|log(S(u)/S(0))− (r − q)u− log (1− σ2u)|dW (s)

We observe that the local volatility is linear in the absolute value of the
deviation of log prices from their mean measured in standardized units. Hence
this model builds in some symmetric local volatility that is probably correct for
the put side, given the relative flatness of implied volatilities in this direction.
For the call side the climb is probably too steep, requiring one to lower the
implied volatilities.

3.2 A Discontinuous Representation

We may also represent our densities as resulting from a discontinuous Markov
inhomogeneous martingale.
This is seen as follows. Consider the process

L(a) = `T (a)

where `(s) is the local time at zero of an independent Brownian motion and
T (a) is the first passage time of this Brownian motion to the level a. Hence L(a)
is the local time at zero of a Brownian motion upto the first passage time of
this Brownian motion to the level a.
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It is well known that L(a) is an exponential random variable with a mean
of 2a (See for example Revuz and Yor Chapter XIII). It follows that

E [exp (−λL(a))] =
1

1 + 2aλ

We may now compute the characteristic function for an independent Brownian
motion evaluated at L(a), Y (a) = B(L(a)) and observe that

E [exp (iuY (a))] =
1

1 + au2

Computing the characteristic function of the density g(x, t) we see that that

E [exp (iuX(t))] =
1

1 + σ2tu2

It follows that
X(t)

law
= B

(
L
(
σ2t
))

and we have the representation of X(t) as an inhomogeneous Markov Lévy
process. Since the law of L(σ2t) is exponential we also have the structure of a
taking the variance of a normal random variable to be exponentially distributed.
For such a process we have that

M(t) =
exp (X(t))

E [exp (X(t))]

= exp
(
X(t) + log

(
1− σ2t

))
is a martingale and

S(t) = S(0) exp ((r − q)t)M(t).

It follows that the Futures price

F (t, T ) = S(t)e(r−q)(T−t)

= S(0)e(r−q)TM(t)

is a martingale. In fact it is a purely discontinuous martingale. For a unit
starting value we may write tha

F (t, T ) = (ex − 1) ∗ (µ− ν)

where µ is the integer valued random measure associated with the jumps of X(t)
and ν is its predictable compensator.
To determine ν, we note that

ν(dx, dt) = k(x, t)dxdt

where
1

1 + σ2u2t
= exp

(∫ t

0

∫ ∞
−∞

(
eiux − 1

)
k(x, s)dxds

)
.
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Equivalently we may write

− log
(
1 + σ2u2t

)
=

∫ t

0

∫ ∞
−∞

(
eiux − 1

)
k(x, s)dxds

Differentiating with respect to t we get that

− σ2u2

1 + σ2u2t
=

∫ ∞
−∞

(
eiux − 1

)
k(x, t)dx

Now differentiate with respect to u to get that

− 2σ2u

(1 + σ2u2t)
2 = i

∫ ∞
−∞

eiuxxk(x, t)dx

Hence we have that

i

∫ ∞
−∞

(cos(ux) + i sin(ux))xk(x, t)dx = − 2σ2u

(1 + σ2u2t)
2

and as xk(x, t) is antisymmetric∫ ∞
−∞

sin(ux)xk(x, t)dx =
2σ2u

(1 + σ2u2t)
2

Integrating both sides with respect to u we get that

−
∫ ∞
−∞

cos(ux)k(x, t)dx = − 1

(1 + σ2u2t) t

We may then write∫ ∞
0

cos(ux)k(x, t)dx =
1

2 (1 + σ2u2t) t

=
1

2σ2t2
(

1
σ2t + u2

)
=

1

2σt3/2

(
1
σ
√
t

)
(

1
σ2t + u2

)
We now note that ∫ ∞

0

e−ax cos(ux)dx =
a

(a2 + u2)

It follows that

k(x, t) =
exp

(
− |x|
σ
√
t

)
2σt3/2

.

Making the change of variable y = |x|/
√
t to obtaing the Lévy system

l(y, t) =
exp

(
− y
σ

)
σt
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whereby we observe that X(t) is the difference of two independent compound
exponential processes evaluated at log time and scaled by

√
t. Let Y (t) be the

difference of two independent compound Poisson exponential variates. Then

X(t) =
√
tY (ln t).

4 The Asymmetric Case

Consider now Brownian motion with drift evaluated at L(a). This gives us

X(a) = θL(a) + σB(L(a))

and the characteristic function of X(a) is

E [exp (iuX(a))]

= E

[
exp

(
iuθL(a)− σ2u2

2
L(a)

)]
= E

[
exp

(
−
(
σ2u2

2
− iuθ

)
L(a)

)]
=

1

1 + 2a
(
σ2u2

2 − iuθ
)

=
1

1− 2iuθa+ σ2u2a

Let us now compare this with the density that has the form

g(x, t) =

{
ce−b|x| x < 0
ce−ax x > 0

To organize an integral of unity we must have

c

(
1

a
+

1

b

)
= 1

so

c =

(
1

a
+

1

b

)−1

.

The characteristic function is∫ ∞
0

e−iuxce−bxdx+

∫ ∞
0

eiuxce−axdx

= c

(
1

b+ iu
+

1

a− iu

)
=

c(a+ b)

ab+ (a− b)iu+ u2
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4.1 Calibrating the asymmetry

Under the proposed form the area x > 0 is

1
a

1
a + 1

b

=
1

1 + a
b

Let the probability that x > 0 be η. It follows that

b = a
η

1− η (10)

From a knowledge of η we may freeze the ratio of b to a by the equation (10).
Our density at a particular maturity is then given by

g(x) =

{
aηe−ax x > 0

aηe−aη|x|/(1−η) x < 0

We next determine the variance of this density. For this we note that∫ ∞
0

x2e−cxdx =

∫ ∞
0

w2

c3
e−wdw

=
2

c3

It follows that ∫ ∞
−∞

x2g(x)dx =
2(1− η)3

a2η2
+

2η

a2

=
2

a2

[
η +

(1− η)
3

η2

]

Also we have that as ∫ ∞
0

xe−cxdx =
1

c2

that ∫ ∞
−∞

xg(x)dx =
1

a

[
η2 − (1− η)2

η

]
Hence the variance is

1

a2

(
(1− η)

2
+ η2

η2

)
If we set this to σ2t we obtain that

a =

√
(1− η)

2
+ η2

ση
√
t
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The numerator is unity at η = 0, 1. For η = 1/2 , we have that a =
√

2
σ
√
t
, the

result with the symmetry case. This minimum value for the numerator is 1/
√

2
and it occurs at η = 1/2.
The density is then given by

g(x, t) =


α
σ
√
t
e
− αx
ση
√
t x > 0

α
σ
√
t
e
− α|x|
σ(1−η)

√
t x < 0

α =
√
η2 + (1− η)2

η = P (x > 0).

4.2 The asymmetric Stock Price Model

For the convexity correction we need to evaluate∫ ∞
−∞

exg(x, t)dx

=

∫ ∞
0

α

σ
√
t
exe
− αx
ση
√
t dx+

∫ ∞
0

α

σ
√
t
e−xe

− αx
σ(1−η)

√
t dx

=
α

σ
√
t

[
1

α
ση
√
t
− 1

+
1

α
σ(1−η)

√
t

+ 1

]

=
α

σ
√
t

[
ση
√
t

α− ση
√
t

+
σ(1− η)

√
t

α+ σ(1− η)
√
t

]
=

α

σ
√
t

[
ασ
√
t

(α− ση
√
t)(α+ σ(1− η)

√
t)

]
= exp

[
− log(1− ση

√
t

α
)− log(1 +

σ(1− η)
√
t

α
)

]
This stock price model is therefore

S(t) = S(0)e(r−q)t+σ
√
tx+ω

ω = log

(
1− ση

√
t

α

)
+ log

(
1 +

σ(1− η)
√
t

α

)
where the random variable x has the density

h(x) =

{
αe−

α
η x x > 0

αe−
α

1−η |x| x < 0
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4.3 Call and Put Option Prices

We determine the call and put prices as before based on values of d > 0 or
d < 0. The equation for d is

d =
log
(

K
S(0)

)
σ
√
t

−
(
r − q
σ

)√
t−

log
(

1− ση
√
t

α

)
σ
√
t

−
log
(

1 + σ(1−η)
√
t

α

)
σ
√
t

α =
√
η2 + (1− η)2

η = Pr(x > 0).

For d > 0 the call price is

C(K) = S(0)e−qtF1c(d)−Ke−rtF2c(d)

F1c(d) = η

(
1 +

σ(1− η)
√
t

α

)
e−

α
η (1−ση

√
t

α )|d|

F2c(d) = ηe−
α
η |d|

For d < 0 the put price is

P (K) = Ke−rtF2p(d)− S(0)e−qtF1p(d)

F1p(d) = (1− η)

(
1− ση

√
t

α

)
e
− α
1−η

(
1+

σ(1−η)
√
t

α

)
|d|

F2p(d) = (1− η)e−
α

1−η |d|

For d < 0 we get call by put call parity and similarly for d > 0 we get put
by put call parity.

4.4 Further remarks on calibrating asymmetries

We observe that the logarithm of the forward price at maturity relative to the
initial forward price is positive if the forward price exceeds F (0) exp(ω) where
ω is the convexity correction for the model and F (0) is the initial forward price.
Hence by pricing a digital call option on the forward at the strike given by exp(ω)
one may estimate η the probability x > 0. This may then be used to calibrate
the asymmetry. However, such a procedure may get noisy when evaluating
deep out of the money digital calls and this could hinder the performance of the
hedge. It may be better to allow for a variety of the smaller asymmetries and
adapt the hedge to evaluating its performance on data from the recent past. A
later section presents results on such adapted hedging.

4.5 Asymmetric Case Deltas

The deltas for the asymmetric case are given as follows.
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For d > 0 we get the call delta as

∂C

∂S
= e−qtF1c(d) +

Se−qtF1c(d)

(
−α
η

)(
1− ση

√
t

α

)
∂d

∂S

−Ke−rtF2c(d)

(
−α
η

)
∂d

∂S

Now employ as usual the equation

Ke−rt = Se−qteσ
√
td(1− ση

√
t

α
)(1 +

σ(1− η)
√
t

α
)

and observe that the last terms cancel. We then have the usual construction
of delta

∂C

∂S
= e−qtF1c(d); d > 0

∂P

∂S
= −e−qtF1p(d); d < 0

∂C

∂S
= e−qt +

∂P

∂S
; d < 0

∂P

∂S
=

∂C

∂S
− e−qt; d > 0.

5 Sample of Implied Volatilities

For option prices on the S&P 500 index as at June 8, 2015 we present for
four maturities three implied volatility curves. These are for the Black Mer-
ton Scholes, Laplacian and Asymmetric Laplacian models. Figure 1 presents
these implied volatilities. The Laplacian and Asymmetric Laplacian implied
volatilities bend at the forward reflecting the shift in the density.

6 Hedging at Laplacian Implied Volatilities

Comparing hedging strategies in a relevant manner is a diffi cult task for one has
to decide a number of factors in an interesting and meaningful way. In fact the
absence of good answers to such questions led us to abandon the presentation
of this model back in 2001 when it was first developed it. The factors at issue
are, i) what are the instruments being hedged, ii) what is the environment in
which the hedge is being conducted and iii) how are the post hedge risks to be
evaluated and compared. We may begin by briefly considering some traditional
answers to such questions and their associated reservations.
We could consider as instruments a call or put option. For the environment

we could take an underlying geometric Brownian motion or other Lévy process

15



1 7 0 0 1 7 5 0 1 8 0 0 1 8 5 0 1 9 0 0 1 9 5 0 2 0 0 0 2 0 5 0 2 1 0 0 2 1 5 0 2 2 0 0
0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3
M a t u r i t y   = 3 9      d a y s

1 5 0 0 1 6 0 0 1 7 0 0 1 8 0 0 1 9 0 0 2 0 0 0 2 1 0 0 2 2 0 0 2 3 0 0
0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3

0 .3 5
M a t u r i t y   = 7 4      d a y s

1 4 0 0 1 5 0 0 1 6 0 0 1 7 0 0 1 8 0 0 1 9 0 0 2 0 0 0 2 1 0 0 2 2 0 0 2 3 0 0
0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3

0 .3 5
M a t u r i t y   = 1 0 2       d a y s

1 4 0 0 1 5 0 0 1 6 0 0 1 7 0 0 1 8 0 0 1 9 0 0 2 0 0 0 2 1 0 0 2 2 0 0 2 3 0 0 2 4 0 0
0 .0 5

0 .1

0 .1 5

0 .2

0 .2 5

0 .3
M a t u r i t y   = 1 9 3       d a y s

Figure 1: Shown are the Black Merton Scholes implied volatilities in dots.
The Variance Exponential implied volatilities are represented by circles and the
Asymmetric Variance Exponential implied volatilities are shown by plus signs.
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admitting some jumps or discontinuities. For a richer environment one may
further add features of stochastic and/or local volatility. The post hedge resid-
ual risks may be evaluated using variance as a measure of residual risk. The
reservations with these answers are as follows.
A single option is a short lived experience coming into existence briefly for a

few months and hence the interest in such an activity is equally limited. When
the environment is some model, however sophisticated, the interest is limited
by the model as we are certain that we shall not in reality experience any of
these models. In this regard we note the analysis of Crépey (2004) that argues
for smile adjusted deltas in markets with physical and risk neutral negative
skewness. Earlier related comparisons for delta hedging include Bakshi, Cao
and Chen (1997), Dumas, Fleming and Whaley (1998) and Vähämaa (2004).
With regard to smile adjustments one may observe that given the right risk
neutral density, and one, with a positive volatility, exists by no static arbitrage
(Breeden and Litzenberger (1978)), then for this density the smile would be flat
with no adjustment needed. Hence smile adjustments are just a consequence of
using the implied volatility from the wrong density. By exploring other densities
we naturally mitigate smile issues. Additionally, what one really wants to know
is how the hedges work in real markets over extended periods of time on real
positions.
A popular criterion in hedging studies is variance reduction with analyti-

cal work by Schweizer (2001) and empirical investigations by Alexander and
Barossa (2007). More recently Hull and White (2016) propose extensions of
vega adjusted deltas for variance minimization extending the approaches of
Alexander, Rubinov, Kalepky and Leontsinis (2012). But we may note with
regard to variance reduction that the focus on risk reduction however measured
is not a rational economic objective. The risk can be eliminated by not taking
any exposure in the first place. The attention should be on the market value
of the activity being conducted and the activity of buying or selling a single
option is not interesting in the first place. What one may really may want to
look at is the market value of on going businesses that embed different hedging
systems. Real businesses are of course far too complicated to redo in different
ways to then compare results. An interesting solution is offered by the activity
of constructing dynamic volatility indices. We consider three here that have
Bloomberg tickers of MSCBEVOG, MSUSMSDS and MSUSSPVP. We consider
stylized forms of these indices that we now describe.
The dynamic index MSCBEVOG has a number of world wide indices for

underliers that are converted to US dollars using current exchange rates. We
restrict attention to just the S&P 500 index. Our stylized index every day sells
25 delta one month puts and calls, marks to market all open positions and
delta hedges these positions daily taking a position in the daily change in the
index itself. For the index MSUSMSDS we sell daily 10 delta puts and buy
40 delta calls, mark open positions to market and delta hedge by postioning in
the daily change in the S&P 500 index. In both cases all the option trading,
marking, and delta hedging is done daily from May 9, 1997 to April 25, 2015.
Two delta hedges are implemented using the Black Merton Scholes model and
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the Laplacian model.
The actual indices trade exchange quoted strikes and maturities by approx-

imating the one month maturity by averaging across neighbouring maturities
and approximating strikes by exchange traded strikes closest to the desired or
target strikes. For the implementation presented here we summarize the op-
tion surface across strike and maturity by the four parameters of the V GSSD
model introduced in Carr, Geman, Madan and Yor (2007). This model has
been calibrated to option prices with maturities between a month and a year
and absolute moneyness below 33% for each day over the stated data period and
the parameter file has been stored. We may then use the model to trade and
mark all options at model prices for all arbitrary strikes and maturities. Hence
we trade and hold the exact one month maturity and the strikes with the exact
target deltas. This allows us to simulate the path of stylized dynamic volatility
indices through time. The exercise may be extended to other underliers by first
building the V GSSD parameter file for the other underliers.
The first two questions are then answered by setting up dynamic business

enterprises trading options continuously through time for the instruments to be
hedged. These are the open positions in each business each day. The environ-
ment is the time path of actual option prices across strikes and maturities as
they have been realized in markets through time. The result to be evaluated is
the dynamic stream of the change in the net worth of the business as embod-
ied in the time path of the dynamic indices. For this we turn our attention to
conservative valuation as it occurs for the two price economies of conic finance.
For the conservative valuation of a random variable in conic finance one

replaces expectation by expectation with respect to a non-additive probability.
The problem with the use of expectation is that it treats all probabilities equally
and does not account for one’s lack of experience with probabilities associated
with extreme tails events. Conservatism in conic finance objectives is attained
by inflating the probabilities of tails loss events while simultaneously depress-
ing the probability of tail gain events. An expectation may be seen to be an
integral of all tails stretching across levels of losses and gains. An expectation
with respect to non-additive probability is an expectation under a distortion
of the original distribution function by a concave distribution function. This
conservative valuation can be seen to be an infimum of all expectations taken
with respect to all alternative probabilities that are bounded above by the dis-
tortion of the original probability. The conservative valuation of a liability is
the supremum of all such alternative valuations. The former delivers the bid
or lower price of a two price economy while the latter delivers the ask or upper
price of a two price economy. One can show that the bid or lower price equals
the reward or ordinary expectation less a risk charge that is the ask price for
the negated centered random variable. Modulo the expectation one holds the
centered random variable and exit requires the purchase of its negative at a cost
equal to the asking price.
Such conservative valuations of random variables X were introduced in

Cherny and Madan (2009, 2010) using the distortion minmaxvar that employs
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the distortion

Ψ(u) = 1−
(

1− u
1

1+γ

)1+γ

For a random sample of outcomes for daily changes in the index value xn yielding
the ordered sequence x(n) the bid or lower price is given by

b(X) =

N∑
n=1

x(n)

(
Ψ
( n
N

)
−Ψ

(
n− 1

N

))
.

We report on such bid prices for various entitites involved in the evaluation of
hedged dynamic indices and comment on the related implications. The stress
level γ was 0.075. The results for the two dynamic indices are presented in
separate subsections.

6.1 Stylized MSCBEVOG results

Figure 2 presents a graph of the index value when hedged at Black Merton
Scholes implied volatilities.
Figure 3 presents the excess of the index when hedged by Laplacian and

Asymmetric Laplacian implied volatilities.
The bid price for the unhedged cash flow −1.1227. If we add the hedge

but do not mark to market then the bid price drops to −7.5123. The bid price
for the cash flow marked to market is −11.9078 but unhedged. The cash flow
marked to market and hedged using Black Merton Scholes implied volatilities
has a bid price of −19.85. The corresponding figures for Laplacian hedging and
asymmetric Laplacian variance exponential hedging are respectively −19.8947
and −19.9171.

6.2 Stylized MSUSMSDS results

Figure 4 presents the graph for the index value of this stylized product as hedged
by the Black Merton Scholes implied volatility and the Laplacian models.
We observe that the index paths under Variance Exponential and Asym-

metric Variance Exponential hedging are smoother. This reflected in the bid
prices for the three hedging procedures that are respectively −5.6971, 0.2060
and 0.1530. Unlike the case for the 25 delta trade that is short maturity out of
the money with comparable valuations across hedging strategies the valuations
here are quite different.

7 Analysis of businesses selling three month stran-
gles on the S&P 500 index.

This section presents an analysis of the stylized index MSUSSPVP. The index
sells three month 20, 30, 40 and 50 delta strangles that are then delta hedged
and marked to market. The data period for the analysis of such businesses
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Figure 2: Index selling 25 delta puts and calls.
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is the level of the S&P 500 index daily from May 9, 1997 to March 3, 2016
along with the parameter file for the V GSSD model calibrated to the option
data for maturities between a month and a year. The stylized strategy sells all
four strangles daily for an exact three month maturity at the exact deltas and
delta hedges and marks to market all open option positions. Cash flows, hedge
cash flows and mark to market values are constructed for five businesses, the
aggregate business selling all four strangles and the four component businesses
that just sell only the 20, 30, 40 and 50 delta strangles. We report here on just
the use of the Black Merton Scholes hedge and the Laplacian hedge.
We report results for all five businesses labeled A, B, C, D and E that sell

respectively the four strangles, just the 20, 30, 40 and 50 delta strangles. At the
stress level of 0.075 we present the conservative valuation or bid prices for the
whole period and the last thousand days for the unhedged and unmarkedcash
flows CFV , the sum of unhedged cash flow and the daily change in the mark
to market value of open positions CFMV, the hedged but unmarked cash flows
CFHBSV and CFHV EV using Black Merton Scholes hedging or Variance
Exponential Hedging and finally the hedged and marked cash flow CFMHBSV
and CFMHV EV. There are six bid prices reported for each of five businesses
for two subperiods each in Table 1. The rows for the diversification benefit DB
express the excess of the bid price for the aggregate business A over the sum of
the bid prices for the component businesses.

TABLE 1
Bid Prices
Period Business CFV CFMV CFHBSV CFHVEV CFMHBSV CFMHVEV

A 55.03 −141.48 −151.10 −181.08 −28.63 −45.14
B 10.77 −25.12 −28.53 −40.64 −7.44 −18.00

Full C 13.41 −34.09 −36.54 −46.64 −7.12 −15.30
D 14.93 −40.62 −42.81 −50.54 −7.76 −11.69
E 15.52 −43.84 −45.04 −50.42 −8.07 −8.70
DB 0.40 2.19 1.82 7.16 1.76 8.55
A 90.86 −80.36 −99.13 −145.09 −26.42 −66.80

Last B 17.53 −12.02 −17.59 −38.44 −7.17 −26.64
1000 C 22.18 −19.10 −22.89 −39.80 −5.65 −21.77
Days D 25.02 −24.52 −28.85 −39.83 −7.34 −16.21

E 25.81 −27.67 −32.11 −37.68 −8.89 −11.14
DB 0.32 2.95 2.31 10.66 2.63 8.96

We observe from Table 1 that the unhedged and unmarked cash flows from
the five businesses are quite valuable. Considerable value is lost by the mark to
market and this regained by the hedge in the presence of marking, no matter
how it is hedged. In the absence of a mark to market the addition of the
hedge is quite detrimental, not matter how the hedge is done. The table clearly
supports the position that the benefits of hedging only accrue in the presence of
a mark to market culture. All the businesses have better valuations in the last
thousand days that exclude the financial crisis present in the full period. The
diversification benefits are higher in a Laplacian hedging regime.
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Figure 5: The stylized index MSUSSPVP hedged by Black Merton Scholes,
Variance Exponential and a mixture of the two.

Figure 5 presents the time path of the three indices for the aggregate business
using Black Merton Scholes hedging, Laplacian hedging and a weighted average
of the two deltas.
In light of Table 1 it is instructive at the cummulated cash flows unhedged

and unmarked along with just marking, just hedging and both marking and
hedging. Figure 6 presents the time paths of these four values.
One may clearly see the volatility induced by the process of marking that

is partially compensated by the volatility of hedging resulting in the full index
that is both marked and hedged but dominated in all respects by the unmarked
and unhedged cash flow. Table 2 presents the performance measures for the
four time paths presented in Figure 6 over the last three years with the Max
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Draw Down (MDD) in thousands of dollars.

TABLE 2
MSUSSPVP
Performance Measures

11/14-11/15 11/13-11/14 11/12-11/13
uhum uhm hum hm uhum uhm hum hm uhum uhm hum hm

Sharpe 29.67 1.40 0.24 0.65 12.63 1.61 1.10 2.08 4.31 0.11 1.04 1.03
GLR 40.42 1.43 1.07 1.13 5.74 1.33 1.22 1.49 1.84 0.10 1.20 1.21
PP. 0.94 0.70 0.63 0.62 0.82 0.59 0.63 0.68 0.62 0.48 0.62 0.59
AI 1.07 0.06 0.01 0.02 0.48 0.06 0.04 0.08 0.16 0.04 0.04 0.04
MDD 0.476 34.58 27.27 10.58 0.46 10.97 9.08 5.70 9.72 19.36 12.02 4.80
Skw -1.49 -0.88 -0.10 -2.46 -0.99 -0.18 -0.06 -2.11 -0.37 0.97 -0.11 -0.83
Krt 5.52 24.42 24.39 14.56 3.47 6.08 5.46 11.31 1.89 6.51 5.93 8.05
Peak 0.80 0.89 0.90 0.85 0.70 0.77 0.79 0.81 0.55 0.78 0.76 0.79
Tail 0.05 0.04 0.04 0.04 0.07 0.07 0.07 0.04 0.02 0.06 0.06 0.05

7.1 Valuing the marked and hedged business

A marked to market and hedged business has a cummulated cash position and
a marked to market value of open option positions that one may denote by Wt

at time t. The daily change Xt = Wt−Wt−1 may be viewed as the daily PNLt
of the business and we may wish to ask what such a business is worth at time
t as an ongoing concern operating in perpetuity. We know the business is risky
and the daily PNL consequences are random. If we knew the distribution of
this random variable we could place a conservative valuation on the business by
using the methods of conic finance by evaluating the bid or lower price of a two
price economy. This lower price is an expectation of the random variable taken
with respect to a non-additive probability that judiciously raises the probability
of tail loss events and lowers the probabilities in the upper tail. With a view to
accessing a random sample of daily outcomes we treat the sequence of 252 daily
PNL outcomes immediately following time t as such a sample. The valuation at
time t is then the distorted expectation of the immediately following 252 daily
PNL outcomes. We compute such valuation time paths for the three businesses
adopting hedging by Black Merton Scholes and the Laplacian deltas. Figure 7
present a graph of the time path of such valuations stopping 252 days before
the end of the data period. We observe a substantial improvement delivered by
Laplacian hedging over the period of the financial crisis of 2008.

8 Synthesizing the Laplacian and Gaussian mod-
els in the Laplace Gauss (LG) model

We wish to nest the asymmetric Laplace and the Gaussian density as candidates
for impled volatility construction followed by delta hedging using derivatives of
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Figure 7: Valuations based on distorted expectations of the succeeding 252 days
of daily PNL observations. The stress level used was 0.075.
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values based on such alternative densities. The density we consider has the form

g(x) = κ [1x>0 exp (−cp|x|α) + 1x<0 exp (−cn|x|α)]

where κ is a normalizing constant and cp, cn are calibrated to the variance and
the possibly asymmetric probability that x > 0 differs from 1/2. The stock price
is given by the exponential of x adjusted to organize the correct risk neutral
drift.
The diffi culty with formulation here is that we do not have a closed form for

the integration of the exponential against such a density. Numerical integrations
could be performed but this takes matters too far from the basic advantages
of working with implied volatilities. Our solution is to observe that we may
approximate the exponential very well by

a(x) =

8∑
n=0

xn

n!

in the interval |x| ≤ 2 and we are comfortable with such a truncation of the
density. So we work with a(x) in the interval [−2, 2].
To perform all required integrations we need to be able to integrate the form

H(b, c, n, α) =

∫ 2

b

xne−cx
α

dx, 0 ≤ b ≤ 2.

We define

H(b, c, n, α) =

∫ c2α

cbα

(u
c

)n
α

e−u
1

αc
1
α

u1/α−1du

=
Γ
(
n+1
α

)
αc

n+1
α

[
gammainc

(
cbα,

n+ 1

α
, upper

)
− gammainc

(
c2α,

n+ 1

α
, upper

)]
.

The normalizing constant is then

κ =


Γ( 1

α )

αc
1
α
p

(
1− gammainc

(
cp2

α, 1
α , upper

))
+

Γ( 1
α )

αc
1
α
n

(
1− gammainc

(
cn2α, 1

α , upper
))

−1

.

The mean is given by

µ = κ(H(0, cp, 1, α)−H(0, cn, 1, α))

The noncentral moments are given by

E[xn] = κ (H(0, cp, n, α) + (−1)nH(0, cn, 1, α))

The probability that x > 0 is

η =

Γ( 1
α )

αc
1
α
p

(
1− gammainc

(
cp2

α, 1
α , upper

))
Γ( 1

α )

αc
1
α
p

(
1− gammainc

(
cp2α,

1
α , upper

))
+

Γ( 1
α )

αc
1
α
n

(
1− gammainc

(
cn2α, 1

α , upper
))
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A later section presents the mapping, for a fixed value for α, from the σ, η
parameterization to the parameters cp, cn and in the reverse direction.

8.0.1 LG Option Pricing

We now come to pricing a call option under this model given the parameters
cp, cn, α valid at any maturity. For this we first need the convexity correction
and define

S = S0 exp ((r − q) t+ ω + x)

where x has the density g(x).
We first compute ω as

e−ω =

(∫ 2

−2

8∑
n=0

xn

n!
g(x)dx

)

=

8∑
n=0

(∫ 2

0

xn

n!
κ exp (−cpxα) dx+ (−1)n

∫ 2

0

κ
xn

n!
κ exp (−cnxα) dx

)

= κ

(
8∑

n=0

H(0, cp, n, α) + (−1)nH(0, cn, n, α)

)
.

We now consider a call option of strike K with payoff

(S0 exp((r − q)t+ ω + x)−K)+

= (S0 exp((r − q)t+ ω)a(x)−K)+

The relevant domain of integration is given by

ln

(
S0

K

)
+ (r − q)t+ ω + x > 0

or

x > −b

b = min

(
ln

(
S0

K

)
+ (r − q)t+ ω, 2

)
.

The call price is given by

S0e
−qt+ω

∫ 2

−b
a(x)g(x)dx− e−rtK

∫ 2

−b
g(x)dx

For the second integral we get∫ 2

−b
g(x)dx = 1b<0κH(−b, cp, 0, α) + 1b>0κ (H(0, cp, 0, α) +H(0, cn, 0, α)−H(b, cn, 0, α))

= 1b<0κH(−b, cp, 0, α) + 1b>0 (1− κH(b, cn, 0, α))
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For the first integral we have∫ 2

−b
a(x)g(x)dx = 1b<0

8∑
n=0

κH(−b, cp, n, α)

n!
(11)

+1b>0

(
8∑

n=0

κH(0, cp, n, α)

n!
+

8∑
n=0

κ (−1)
n

(H(0, cn, n, α)−H(b, cn, n, α))

n!

)
For the put option we use put call parity.

8.1 Laplace Gauss Delta

The Call price is given by

C = S0e
−qt+ω

∫ 2

−b
exg(x)dx−Ke−rt

∫ 2

−b
g(x)dx

For the call delta we get

∂C

∂S0
= e−qt+ω

∫ 2

−b
exg(x)dx+

∂b

∂S0
e−bg(−b)−Ke−rt ∂b

∂S0
g(−b)

Now we have that
S0e

(r−q)t+ω−b = K

and hence the last two terms cancel. For the first we write

∂C

∂S0
= e−qt

∫ 2

−b e
xg(x)dx∫ 2

−2
exg(x)dx

and hence the delta is the probability that the call is in the money under
the so called share measure. For the put delta we use put call parity and write

∂P

∂S0
=

∂C

∂S0
− e−qt

= −e−qt
(

1−
∫ 2

−b e
xg(x)dx∫ 2

−2
exg(x)dx

)
Hence both deltas are determined on evaluating

A =

∫ 2

−b
exg(x)dx

for which we uspe 11.
We then have that

∂C

∂S0
= e−qteωA

∂P

∂S0
= −e−qt (1− eωA) .
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8.2 Closed form for the mappings from σ, η to cp, cn given
α and back

We may treat the integral from 2 to infinity as zero. The conditions for calibra-
tion are then

η =

Γ( 1
α )

αc
1
α
p

Γ( 1
α )

αc
1
α
p

+
Γ( 1

α )

αc
1
α
n

=
1

1 +
(
cp
cn

) 1
α

which yields
cp
cn

=

(
1

η
− 1

)α
.

The variance condition is

σ2t =
Γ
(

3
α

)
αc

3
α
p

+
Γ
(

3
α

)
αc

3
α
n

−
(

Γ
(

2
α

)
αc

2
α
p

−
Γ
(

2
α

)
αc

2
α
n

)2

which is the expectation of the square less the square of the mean.
This may be written as

Γ
(

3
α

)
α

(
1

c
3
α
p

+
1

c
3
α
n

)
−

Γ
(

2
α

)2
α2

(
1

c
4
α
p

+
1

c
4
α
n

− 2

(cpcn)
2
α

)
We know for

β =

(
1

η
− 1

)α
that

cp = βcn

and letting x = cn we get

σ2t =
Γ
(

3
α

)
α

(
1

β
3
α

+ 1

)
1

x
3
α

−
Γ
(

2
α

)2
α2

(
1

β
4
α

+ 1− 2

β
2
α

)
1

x
4
α

For η near 1/2 and β near unity we may ignore the square of the mean term
and write

cn =

(
Γ
(

3
α

)
α

(
1

β
3
α

+ 1

)
1

σ2t

)α
3

cp = βcn

β =

(
1

η
− 1

)α
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In the opposite direction we write

η =
1

1 +
(
cp
cn

) 1
α

σ2t =
Γ
(

3
α

)
αc

3
α
p

+
Γ
(

3
α

)
αc

3
α
n

9 Experiments with LG and Adapted hedging

We report here on the result of constructing 10 hedges using Black, Merton
Scholes, the symmetric Laplace Gauss with powers .25, .5, and .75 and then
the same three biased down to an up probability of .45 and an up probability
of .55. In addition we evaluate the bid price for the change in net worth over
the last quarter at a stress level of 0.1 and put on the hedge the next day using
the strategy with the largest bid price. The product hedged was the stylized
MSUSSPVP from March 15 2006 to March 16 2016. Figure 8 presents the time
path of the index value for the Black Merton Scholes, Laplace Gauss power 0.75
in the symmetric and two biased cases for down and up along with the adpated
hedge. It clear in this case that the adapted hedge dominates all the other fixed
hedging strategies.

10 Conclusion

The paper replaces the exponential of squared returns embedded in Gaussian
densities and their associated thin tails with the absolute value of returns to form
Laplacian and exponentially tilted Laplacian densities at unit time. Densities
at other time points are obtained by scaling and stochastic processes consistent
with these marginals are identified. Aside from local volatility we identify the
densities as consistent with the difference of compound exponential processes
taken at log time and scaled by the square root of time. The underlying process
has a single parameter, the constant variance rate of the process. The unit time
density is also that of a normal distribution with a exponentially distributed
variance.
Delta hedging strategies based on Laplacian and Asymmetric Laplacian im-

plied volatilities are then formulated and compared with Black Merton Scholes
implied volatility hedging. The hedging strategies are implemented by in styl-
ized businesses represented by dynamic volatility indexes. The Laplacian hedge
is seen to be smoother for the skew trade of the index MSUSMSDS. It also
performs better through the financial crisis for the index MSUSSPVP. Finally
an adapted hedge is formulated by evaluating a hedge performance measure on
past quarterly data with the best hedge used for the next day. This adapted
hedge dominates all fixed hedge strategies for the product MSUSSPVP.
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Figure 8: Black Merton Scholes, Laplace Gauss Symmetric, Asymmetric Down
and Asymmetric Up along with the adapted hedge.
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